高校数学[総目次]
数学Ⅲ 第3章 積分法
スライド | ノート | |
1. 不定積分 | [無料] | |
2. 置換積分法(不定積分) | [無料] | |
3. 部分積分法(不定積分) | [無料] | |
4. 定積分とその性質 | [会員] | |
5. 置換積分法(定積分) | [会員] | |
6. 部分積分法(定積分) | [会員] | |
7. 定積分と微分法 | [会員] | |
8. 定積分と和の極限 | [会員] | |
9. 定積分と不等式 | [会員] | |
10. 定積分の応用(面積) | [会員] | |
11. 定積分の応用(体積) | [会員] | |
12. 定積分の応用(回転体の体積) | [会員] | |
13. 曲線の長さ |
5.置換積分法(定積分)
5.1 定積分の置換積分法
関数 $f(x)$ は区間 $[a,b]$ で連続,更に $x$ は微分可能な関数 $g(t)$ により $x=g(t)$ で表されているとする.そして,$t$ が $\alpha$ から $\beta$ まで変化したとき,$x$ は $a$ から $b$ まで変化したとする.
このとき,$f(x)$ の不定積分を $F(x)$ とすれば,置換積分法の公式(Ⅰ)により,
\[\begin{align*}
\int\!f(g(t))g'(t)\,dt&=\int\!f(x)\,dx\\[5pt]
&=F(x)+C\\[5pt]
&=F(g(t))+C
\end{align*}\]
であるから,
\[\begin{align*}
\int_\alpha^\beta\!\!f(g(t)g'(t)\,dt&=\Bigl[F(g(t))\Bigr]_\alpha^\beta\!\\[5pt]
&=F(g(\beta))-F(g(\alpha))\\[5pt]
&=F(b)-F(a)\\[5pt]
&=\int_a^b\!\!f(x)dx
\end{align*}\]
となる.
定積分の置換積分法\[\int_a^b\!\!f(x)\,dx=\int_\alpha^\beta\!\!f(g(t))g'(t)\,dt \]
重要例題3選
以下の3つの例題は基本的,かつ重要で,入試問題等にしばしば登場する.
例題1 $a>0$ のとき,$\displaystyle\int_0^a\!\!\sqrt{a^2-x^2}\,dx$ を計算せよ.
答
解答例を表示する例題2 $\displaystyle\int_0^a\!\!\frac1{a^2+x^2}\,dx$ を計算せよ.
答
解答例を表示する例題3(重要) 次を示せ. \[\int_0^a\!\!f(x)\,dx=\int_0^a\!\!f(a-x)\,dx\]
答
解答例を表示する5.2 偶関数・奇関数の定積分
確認\begin{align*} &f(x)\mbox{は偶関数}\iff f(-x)=f(x)\\\\ &f(x)\mbox{は奇関数}\iff f(-x)=-f(x) \end{align*}
偶関数・奇関数の定積分\begin{align*} &f(x)\mbox{が偶関数}\Longrightarrow \int_{-a}^a\!\!f(x)dx=2\int_0^a\!\!f(x)dx\\\\ &f(x)\mbox{が奇関数}\Longrightarrow \int_{-a}^a\!\!f(x)dx=0 \end{align*}
証明
\[\int_{-a}^a\!\!f(x)\,dx=\int_{-a}^0\!\!f(x)\,dx+\int_0^a\!\!f(x)\,dx\ \ \cdots\mbox{①}\] ここで右辺第1項について,$x=-t$ とおくと \[dx=-dt,\ \ \begin{array}{c|ccc} x&-a&\to& 0\\\hline t&a&\to& 0 \end{array}\] であるから,
よって,$f(x)$ が偶関数のとき, \[\mbox{①}=\int_0^a\!\!f(x)\,dx+\int_0^a\!\!f(x)\,dx=2\int_0^a\!\!f(x)\,dx\] $f(x)$ が奇関数のとき, \[\mbox{①}=\int_0^a\!\!\{-f(x)\}\,dx+\int_0^a\!\!f(x)\,dx=0\]
■
このページで疑問は解決されましたか?
こちら から数学に関するご質問・ご要望をお寄せください。
高校数学[総目次]
数学Ⅲ 第3章 積分法
スライド | ノート | |
1. 不定積分 | [無料] | |
2. 置換積分法(不定積分) | [無料] | |
3. 部分積分法(不定積分) | [無料] | |
4. 定積分とその性質 | [会員] | |
5. 置換積分法(定積分) | [会員] | |
6. 部分積分法(定積分) | [会員] | |
7. 定積分と微分法 | [会員] | |
8. 定積分と和の極限 | [会員] | |
9. 定積分と不等式 | [会員] | |
10. 定積分の応用(面積) | [会員] | |
11. 定積分の応用(体積) | [会員] | |
12. 定積分の応用(回転体の体積) | [会員] | |
13. 曲線の長さ |