数学A 第3章 図形の性質
スライド | ノート | 問題 | |
1. チェバの定理 | [無料] | [会員] | |
2. メネラウスの定理 | [無料] | [会員] | |
3. チェバの定理の逆 | [無料] | ||
4. メネラウスの定理の逆 | [会員] | ||
5. 円に内接する四角形 | [会員] | [会員] | |
6. 接弦定理とその逆 | [会員] | ||
7. 方べきの定理とその逆 | [会員] | ||
8. 三角形の五心 | |||
重心 | |||
外心 | |||
垂心 | |||
内心 | |||
傍心 |
中学校の範囲
スライド | ノート | 問題 | |
1. 円周角の定理 | [会員] | ||
2. 円周角の定理の逆 | [会員] |
演習問題
問題1 [難易度 易]
△ABCにおいて,辺ABを $2:1$ に内分する点をD,辺ACを $2:3$ に内分する点をEとし,BE,CDの交点をPとする.直線APと辺BCとの交点をQとするとき,$\rm{BQ:QC}$ を求めよ.
問題2 [難易度 標準]
△ABCにおいて,辺ABを $3:1$ に外分する点をD,辺ACを $5:2$ に外分する点をEとし,BE,CDの交点をPとする.直線APとBCとの交点をQとするとき,$\rm{BQ:QC}$ を求めよ.
問題3 [難易度 標準]
△ABCにおいて,辺AB上を $2:1$ に内分する点をDとし,Dを通ってBCに平行な直線とACとの交点をEとする.BE,CDの交点をPとし,直線APとBCとの交点をQとするとき,QはBCの中点であることを示せ.
チェバの定理の式は辺の長さを用いた式になっていますが,例えば $\rm{\dfrac{BQ}{QC}}$ という部分は $\rm{BQ:QC}$ の比の値です.従って辺の長さそのものがわからなくても,比の値さえわかればよいという訳です. POINT