このページにある内容は,こちらのスライド でわかり易く説明しています.

PC環境なら全画面表示でより見やすく,よりわかりやすい!
全画面表示の仕方は こちら

高校数学[総目次]

数学Ⅲ 第5章 2次曲線

  スライド ノート
1. 放物線 [会員]  
2. 楕円 [会員]  
3. 双曲線 [会員]  
4. 2次曲線の平行移動 [会員]  
5. 2次曲線と直線 [会員]  
6. 2次曲線の性質 [会員]  
7. 曲線の媒介変数表示 [会員]  
8. 極座標と極方程式 [会員]  

3.双曲線

 実は双曲線の登場はここが初めてではない.これまでにも反比例の式として双曲線 $y=\dfrac1x$ が出てきていた.放物線のときと同様に,双曲線も2次曲線という枠組みの中での定義がどうなっているかを確認していこう.

3.1 双曲線の方程式

 2定点F,F’からの距離の差が一定である点Pの軌跡

 2定点F,F’を焦点という.

双曲線の方程式

 焦点:F$(c,0)$,F’$(-c,0)$
 距離の差:$2a$ (ただし,$c>a>0$)
である双曲線の方程式を求める.

\[\begin{align*} &|{\rm FP-F’P}|=2a\ \ \cdots\mbox{①}\\[5pt] \iff &{\rm FP-F’P}=\pm 2a\\[5pt] \iff &{\rm FP}={\rm F’P}\pm 2a\\[5pt] \Longrightarrow\ &{\rm FP}^2={\rm F’P}^2\pm 4a\cdot{\rm F’P}+4a^2\\[5pt] \iff &(x\!-\!c)^2\!+\!y^2\!=\!(x\!+\!c)^2\!+\!y^2\!\pm\! 4a\sqrt{(x\!+\!c)^2\!+\!y^2}\!+\!4a^2\\[5pt] \iff &\pm a\sqrt{(x+c)^2+y^2}=a^2+cx\\[5pt] \iff &a^2\{(x+c)^2+y^2\}=(a^2+cx)^2\\[5pt] \iff &(c^2-a^2)x^2-a^2y^2=a^2(c^2-a^2) \end{align*}\]

 ここで $\sqrt{c^2-a^2}=b$ とおくと,

\[\begin{align*} b^2x^2-a^2y^2&=a^2b^2\\[5pt] \therefore\ \frac{x^2}{a^2}-\frac{y^2}{b^2}&=1\ \ \cdots\mbox{②} \end{align*}\]

 よって条件①を満たす点は,曲線②上にある.逆に曲線②上の任意の点は,$c=\sqrt{a^2+b^2}$ とおくことで条件①を満たす.(詳しくはスライド で.)

 方程式②を,双曲線の方程式の標準形という.

 直線FF’と双曲線の2つの交点を頂点,線分FF’の中点を双曲線の中心という.

 双曲線は,$x$ 軸,$y$ 軸,原点に関して対称である.

補足

 双曲線においては,$a,b$ の大小関係を考えなくてよい.

双曲線の漸近線

 $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1\ \cdots$①より

\[y^2=\frac{b^2}{a^2}(x^2-a^2)\]

 今,$x>0,y>0$ の場合を考えると,

\[y=\frac ba\sqrt{x^2-a^2}\]

となる.ここで,直線 $y=\dfrac bax$ との差(図のPQ)を考えると,

\[\begin{align*} {\rm PQ}&=\frac bax_1-\frac ba\sqrt{{x_1}^2-a^2}\\[5pt] &=\frac ba(x_1-\sqrt{{x_1}^2-a^2})\\[5pt] &=\frac ba\cdot\frac{(x_1-\sqrt{{x_1}^2-a^2})(x_1+\sqrt{{x_1}^2-a^2})}{(x_1+\sqrt{{x_1}^2-a^2})}\\[5pt] &=\frac ba\cdot\frac{a^2}{(x_1+\sqrt{{x_1}^2-a^2})}\\[5pt] &=\frac{ab}{(x_1+\sqrt{{x_1}^2-a^2})}\\[5pt] &\to 0\ (x_1\to\infty) \end{align*}\]

となるから,第1象限で $y=\dfrac bax$ は漸近線となる.

 ①は原点に関して対称であるから,$y=\dfrac bax$ は第3象限でにおいても漸近線である.

 また,①は $y$ 軸に関しても対称であるから,$y=-\dfrac bax$ も①の漸近線である.

双曲線の性質 双曲線 $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1\ \ (a>0,\ b>0)$ において,

  • 焦点は $x$ 軸上で,F$(\sqrt{a^2+b^2},0)$,F’$(-\sqrt{a^2+b^2},0)$
    中心(線分 $\rm FF’$ の中点)は 点 $(0,0)$
  • 座標軸との交点(頂点)は $(a,0),\ (-a,0)$
  • $x$ 軸,$y$ 軸,原点に関して対称
  • 漸近線は,2直線 $\dfrac xa-\dfrac yb=0,\ \dfrac xa+\dfrac yb=0$
  • 楕円上の任意の点から焦点までの距離の差は $2a$

補足

 漸近線の方程式は,双曲線 $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$ の右辺を0とおいた,$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=0$,即ち

\[\left(\dfrac xa+\dfrac yb\right)\left(\dfrac xa-\dfrac yb\right)=0\]

の表す2直線である.

 双曲線 $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$ の焦点の $x$ 座標 $c$ が $c=\sqrt{a^2+b^2}$ となることを,漸近線の方程式から幾何的考察を行うことで求める方法を紹介する.
 双曲線上の点Pが第1象限の無限遠方にある場合は,下図でほぼ ${\rm PF\,/\!/\,PF’}$ となるから,焦点までの距離の差が ${\rm F’Q}=2a$ より ${\rm OR}=\dfrac12{\rm F’Q}=a$.また,$\tan\alpha=\dfrac ba$ より,${\rm FR}={\rm OR}\tan\alpha=b$.よって,△OFRにおいて,$c=\sqrt{a^2+b^2}$.

 直交する漸近線をもつ双曲線を,直角双曲線という.

   $x^2-y^2=1$ (漸近線:$x\pm y=0$)

例題 双曲線 $\dfrac{x^2}9-\dfrac{y^2}4=1$ の焦点,頂点,漸近線の方程式を求め,グラフをかけ.漸近線もかくこと.

こたえ

 焦点:$\sqrt{9+4}=\sqrt{13}$ より,$(\sqrt{13},0),(-\sqrt{13},0)$
 頂点:$(3,0),(-3,0)$
 漸近線:$\dfrac x3-\dfrac y2=0,\dfrac x3+\dfrac y2=0$

3.2 焦点が $y$ 軸上にある双曲線

 曲線 $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=-1\ (a>0,b>0)\ \cdots$① を,直線 $y=x$ に関して対称移動すると,

\[\frac{y^2}{a^2}-\frac{x^2}{b^2}=-1\ \therefore \frac{x^2}{b^2}-\frac{y^2}{a^2}=1\]

 これは双曲線の方程式で,

  焦点 :F$(\sqrt{a^2+b^2},0)$,F’$(-\sqrt{a^2+b^2},0)$
  頂点 :$(b,0),\ (-b,0)$
  漸近線:$\dfrac xb-\dfrac ya=0,\ \dfrac xb+\dfrac ya=0$

であったから,対称移動前を考えると①は次のような双曲線であることがわかる:

  焦点 :F$(0,\sqrt{a^2+b^2})$,F’$(0,-\sqrt{a^2+b^2})$
  頂点 :$(0,b),\ (0,-b)$
  漸近線:$\dfrac xa-\dfrac yb=0,\ \dfrac xa+\dfrac yb=0$

例題 双曲線 $\dfrac{x^2}{25}-\dfrac{y^2}{16}=-1$ の焦点,頂点,漸近線を求め,グラフをかけ.漸近線もかくこと.

こたえ

 焦点:$\sqrt{25+16}=\sqrt{41}$ より,$(0,\sqrt{41}),(0,-\sqrt{41})$
 頂点:$(0,4),(0,-4)$
 漸近線:$\dfrac x5-\dfrac y4=0,\dfrac x5+\dfrac y4=0$

このページで疑問は解決されましたか?

 こちら から数学に関するご質問・ご要望をお寄せください。

高校数学[総目次]

数学Ⅲ 第5章 2次曲線

  スライド ノート
1. 放物線 [会員]  
2. 楕円 [会員]  
3. 双曲線 [会員]  
4. 2次曲線の平行移動 [会員]  
5. 2次曲線と直線 [会員]  
6. 2次曲線の性質 [会員]  
7. 曲線の媒介変数表示 [会員]  
8. 極座標と極方程式 [会員]